Перевод: с русского на английский

с английского на русский

выравнивание относительно

  • 1 выравнивание относительно

    Русско-английский словарь нормативно-технической терминологии > выравнивание относительно

  • 2 выравнивание изображения

    Русско-английский политехнический словарь > выравнивание изображения

  • 3 выравнивание

    1) General subject: adequation, adjustment (напр. текста), aligning, alinement (обычно alignment), allineation, annealing, equation, flattening (кривой и т.п.), justification (выравнивание программой строк абзаца по левой, правой или обеим границам текстового поля или расположение его симметрично относительно центра. Если программа не использует механизма переноса слов, то выравнивание будет дос), levelling, lining, grading, (различий, уровня) levelling-off
    2) Computers: graduation
    4) Aviation: flare, flare-out, flareout (при посадке), flaring-out, flattening (самолёта), flattening out, level-off (в полёте), level-off operation (в полёте)
    5) Naval: righting
    6) Military: dressing (строя), (по уровню) leveling
    8) Agriculture: floating, leveling (напр. пашни), levelling (напр. пашни), smoothing (почвы)
    10) Construction: aligning (по оси), dubbing, squaring up
    11) Mathematics: fit, fitting
    13) Economy: corrective, equalization (напр. дивидендов), leveling-off, levelling-off
    14) Accounting: equalisation
    15) Automobile industry: alignment, dressing, flattening (сглаживание), planing
    17) Diplomatic term: adjustment (платёжного баланса и т.п.)
    18) Cinema: lining up
    22) Information technology: adjust (масштаба, формата печати), adjustment (масштаба, формата печати), align, equalizing, justification (массивов знаков или текста)
    26) Geophysics: whitening
    27) Atomic energy: flaring out
    28) Coolers: equalization
    29) SAP. clearing
    30) Drilling: optimum line
    32) Automation: aligning (по прямой), alignment (по прямой), flatting
    33) Arms production: level ling (прицела)
    36) Makarov: aligning (плоскости, кривой), alignment (плоскости, кривой), antialiasing, applanation, balancing (по величине), base-leveling, cleaning, deplanation (рельефа), equalizing (по величине), flattening (плоскости, кривой), leveling (no уровню), leveling (напр., пашни), levelling (напр., пашни), plaining, planarization (поверхности), smoothing (плоскости, кривой), smoothing effect, surfacing (при отделке), trim
    37) SAP.fin. clrg
    38) Aluminium industry: (site leveling) leveling
    40) Combustion gas turbines: adequation of stress

    Универсальный русско-английский словарь > выравнивание

  • 4 выравнивание изображения

    Универсальный русско-английский словарь > выравнивание изображения

  • 5 выравнивание вертикальных осей аверса и реверса монеты, при котором они расположены относительно друг друга под углом 180 градусов

    Numismatics: coin alignment (например монеты Франции, Испании)

    Универсальный русско-английский словарь > выравнивание вертикальных осей аверса и реверса монеты, при котором они расположены относительно друг друга под углом 180 градусов

  • 6 десятичное выравнивание

    1. decimal alignment

     

    десятичное выравнивание
    Выравнивание чисел в столбце относительно десятичной точки, отделяющей целую часть числа от дробной.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > десятичное выравнивание

  • 7 размещение объектов относительно друг друга по определенным правилам

    Универсальный русско-английский словарь > размещение объектов относительно друг друга по определенным правилам

  • 8 центрирование

    1. centered alignment

     

    центрирование
    выравнивание по центру
    выключка по центру

    Размещение строк документа симметрично относительно центральной вертикальной оси страницы.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > центрирование

  • 9 горизонт

    видимый горизонт
    1. apparent horizon
    2. visible horizon выравнивание в линию горизонта
    levelling-off
    горизонт, видимый в полете
    in-flight apparent horizon
    дальний фланговый горизонт
    upwind wing bar
    искусственный горизонт
    artificial horizon
    истинный горизонт
    1. true horizon
    2. natural horizon огни светового горизонта
    1. horizon bar lights
    2. crossbar lights огни световых горизонтов
    wing bar lights
    относительно горизонта
    in relation to horizon
    планка горизонта
    horizon bar
    световой горизонт
    crossbar
    система световых горизонтов огней подхода
    crossbar approach lighting system
    (к ВПП) средний фланговый горизонт
    middle wing bar
    фланговый горизонт
    wing bar

    Русско-английский авиационный словарь > горизонт

  • 10 линия

    линия сущ
    streamline
    (воздушного потока) агона, линия нулевого магнитного склонения
    agonic line
    аэродром местных воздушных линий
    domestic aerodrome
    базовая линия крыла
    wing base line
    блок индикатора отклонения от линии пути
    across track display unit
    боковая линия
    lateral line
    вихрь в направлении линии полета
    line vortex
    воздушная линия
    air line
    воздушное судно местных воздушных линий
    commuter-size aircraft
    восстанавливать заданную линию пути
    reestablish the track
    вывод на линию пути
    tracking guidance
    выравнивание в линию горизонта
    levelling-off
    выходная линия
    outbound link
    дроссельный пакет линии управления приемистостью
    acceleration control line flow restrictor
    заданная линия пути
    intended track
    запасная линия
    alternate link
    заход на посадку по осевой линии
    center line approach
    изменять линию пути
    change the track
    индикатор отклонения от линии пути
    across track display
    курсовая линия
    lubber line
    линейный огонь линии предупреждения
    clearance bar light
    линия безопасного пролета над препятствиями
    obstacle clearance line
    линия безопасности на перроне
    apron safety line
    линия взлета
    take off line
    линия визирования
    line of sight
    линия входа
    entry line
    линия выруливания
    lead-out line
    линия глиссады
    glide slope line
    линия грузовых перевозок
    all cargo line
    линия дренажа
    drain line
    линия заданного пути
    1. course line
    2. track reference 3. desired track линия заруливания
    lead-in line
    линия заруливания воздушного судна на стоянку
    aircraft stand lead-in line
    линия координатной сетки
    grid line
    линия маршрута
    routing line
    линия нагнетания
    pressure pipe
    линия направления руления
    taxiing direction line
    линия неустойчивого состояния атмосферы
    instability line
    линия огней пути руления
    steering bar
    линия ограничения безопасного расстояния до конца крыла
    wing tip clearance line
    линия ограничения отклонения от глиссады
    glide slope limit line
    линия ограничения препятствий
    obstacle line
    линия отклонения от курса
    course curvature
    линия передачи
    transmission path
    линия перепуска топлива
    bypass fuel line
    линия полета
    line of flight
    линия полета по курсу
    on-course line
    линия положения
    line of position
    линия положения воздушного судна
    aircraft position line
    линия положения, определяемая азимутом
    radial
    линия принятия решения
    decision bar
    линия при сходе с ВПП
    turnoff curve
    линия пути
    track
    линия пути относительно координатной сетки
    grid track
    линия пути полета
    flight track
    линия пути по локсодромии
    rhumb-line track
    линия пути по схеме с двумя спаренными разворотами
    race track
    линия пути приближения
    inbound track
    линия пути при взлете
    takeoff track
    линия пути удаления
    outbound track
    линия пути установленной схемы
    procedure track
    линия равных азимутов
    curve of equal bearings
    линия радиосвязи
    1. wireless link
    2. radio link линия разворота
    turning line
    линия разъема
    1. breakline
    2. parting line линия разъема крыла
    wing split line
    линия руления
    1. taxiing lane
    2. taxilane 3. guideline линия руления воздушного судна в зоне стоянки
    aircraft stand taxilane
    линия руления на место стоянки
    parking bay guideline
    линия сборки
    assembly line
    линия световых огней зоны приземления
    touchdown zone barrette
    линия сигнальных огней
    lights barrette
    линия стоп
    1. stop bar
    2. stop bar position 3. stop line 4. stop sign линия технологического разъема
    production breakline
    линия технологического разъема воздушного судна
    aircraft production break line
    линия тяги
    trust axis
    линия уровня глаз
    eye level path
    линия установки
    alignment bar
    линия хорды
    chord line
    линия хорды крыла
    wing chord line
    линия центрального ряда линейных огней
    barrette center line
    линия циркулярной связи
    conference bridge
    магистральная воздушная линия
    highway
    магнитная ортодромическая линия пути
    magnetic great circle track
    маркировка осевой линии ВПП
    runway centerline marking
    маркировка осевой линии ожидания рулежной дорожки
    taxiway centerline marking
    масло линии нагнетания
    feed oil
    местная линия
    short-stage route
    навигация по линии равных азимутов
    constant-bearing navigation
    наземная линия связи
    landline
    наклонная линия курса
    slant course line
    обозначать осевую линию
    identify the center line
    огни линии стоп
    stop bars lights
    огни линии стоп двустороннего действия
    bidirectional stop bar lights
    огни осевой линии ВПП
    runway centerline lights
    огни продолжения осевой линии
    extended centerline lights
    ортодромическая линия
    great circle line
    осевая линия
    centerline
    осевая линия воздушного судна
    aircraft center line
    осевая линия ВПП
    runway centerline
    осевая линия маршрута
    route centerline
    отклонение от линии горизонтального полета
    deviation from the level flight
    отклонение от линии пути
    across-track displacement
    патрулирование линий электропередач с воздуха
    power patrol operation
    перевозчик на магистральной линии
    trunk carrier
    погрешность залегания средней линии глиссады
    mean glide path error
    погрешность залегания средней линии курса
    mean course error
    положение на линии исполнительного старта
    takeoff position
    пригодность для полета на местных воздушных линиях
    local availability
    равносигнальная линия глиссады
    equisignal glide path
    радиальная линия
    radial
    разрешение на эксплуатацию воздушной линии
    route license
    разъемный клапан линии
    line-disconnect valve
    резкий отворот от линии курса
    breakaway manoeuvre
    сеть авиационных линий
    airline network
    система линий слива
    return line system
    (рабочей жидкости в бак) система наземных линий связи
    landline system
    спутниковая линия передачи данных
    satellite link
    средняя линия аэродинамического профиля
    airfoil center line
    телетайп наземной линии связи
    landline teletypewriter
    телетайпная линия
    teleprinter line
    фактическая линия пути
    true track
    характеристики наведения по линии пути
    track-defining characteristics
    эффект сплошной линии
    linear effect

    Русско-английский авиационный словарь > линия

  • 11 выключка без переноса слов

    1. hyphenless justification

     

    выключка без переноса слов
    Выравнивание строк текста относительно границ только за счет увеличения или уменьшения междусловных пробелов без проставления переносов в словах. Это позволяет получить более удобочитаемые длинные строки, однако в узких колонках текста могут появиться слишком большие междусловные пробелы.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > выключка без переноса слов

  • 12 кислородное обезуглероживание

    1. oxygen decarburization

     

    кислородное обезуглероживание
    Обезуглероживание жидкой стали продувкой ее газообразным кислородом. Кислородное обезуглероживание в ваннах сталеплавильных печей - основной технологический прием, обеспечивающий окисление избыточного (относительно заданного маркой стали) углерода; удаление растворенных в металле азота и водорода, рафинирование от неметаллических включений, интенсивное перемешивание жидкого металла и соответствующее выравнивание его химического состава и температуры.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > кислородное обезуглероживание

  • 13 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

См. также в других словарях:

  • выравнивание относительно — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN alignment around …   Справочник технического переводчика

  • ВЫРАВНИВАНИЕ ЦЕН ФАКТОРОВ ПРОИЗВОДСТВА — (factor price equalization) Обусловленная международной торговлей тенденция к сокращению разницы в относительных ценах производственных факторов в различных странах. В объясняющей межотраслевую торговлю (inter industry trade) модели Хекшера–Улина …   Экономический словарь

  • десятичное выравнивание — Выравнивание чисел в столбце относительно десятичной точки, отделяющей целую часть числа от дробной. [http://www.morepc.ru/dict/] Тематики информационные технологии в целом EN decimal alignment …   Справочник технического переводчика

  • Выключка — Выравнивание набора по левой или правой вертикальным границам полосы. При выключке строк между словами (в некоторых случаях между буквами) вводятся дополнительные пробелы таким образом, чтобы каждая строка текста начиналась у левой границы, а… …   Краткий толковый словарь по полиграфии

  • Валютная система — (Monetary system) Валютная система это правовая форма организации валютных отношений Валютная система: Ямайская, Европейская, Бреттон Вудская, Парижская, Генуэзская, Российская Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Курс валют — (Exchange rate) Курс валют это цена одной валюты к другой валюте Курс валют: понятие и форма, методы установления, котировки и виды, динамика и теории регулирования, валютный паритет и таргетирование Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Германия — (Deutschland) Государство Германия, история и развитие Германии, политическое и экономическое устройство Информация о государстве Германия, история возникновения и развития Германии, политическое и экономическое устройство Содержание… …   Энциклопедия инвестора

  • Феномен 2012 года — Эсхатология Христианская эсхатология Библейские тексты Библейские пророчества Книга Откровения …   Википедия

  • Денежно-кредитная политика — (Monetary policy) Понятие денежно кредитной политики, цели денежно кредитной политики Информация о понятии денежно кредитной политики, цели денежно кредитной политики Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Европейский центральный банк — (European Central Bank) Европейский центральный банк – это крупнейшее международное кредитно банковкое учреждение государств Евросоюза и Зоны Евро Структура и фкункции Европейского Центрального банка, Европейская система центральных банков,… …   Энциклопедия инвестора

  • Прогноз — (Forecast) Определение прогноза, задачи и принципы прогнозирования Определение прогноза, задачи и принципы прогнозирования, методы прогнозирования Содержание Содержание Определение Основные понятия прогностики Задачи и принципы прогнозирования… …   Энциклопедия инвестора

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»